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ABSTRACT 
A simple algebraic multigrid (AMG) solver for linear equations is presented, and its performance compared 
with a conjugate gradient scheme. This multigrid method is extended to solve the discrete Navier-Stokes 
equations, obtained by applying a finite volume approach to three-dimensional incompressible flow on a 
finite element mesh. The resulting multigrid solver is incorporated into a general purpose flow code 
(ASTEC), where it proves faster than the original solution algorithm, based upon SIMPLE. The linear 
AMG solver is both efficient and robust, but the extension to include coupling in the Navier-Stokes 
equations does not converge on all problems. 
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INTRODUCTION 

In recent years, much effort has been devoted to developing multigrid solution algorithms1. This 
is because the multigrid approach offers the prospect of excellent scaling with problem size. 
Specifically, the CPU time should only increase in proportion to the number of unknowns in 
the equations. Other solution strategies (for example, Gaussian elimination or conjugate gradient 
methods) suffer from worse than linear scaling with problem size, so that as computing power 
continues to increase, enabling larger problems to be tackled, their performance becomes relatively 
much poorer. 

The aim of this paper is to present a simple algebraic multigrid (AMG) algorithm, and show 
how this can be used to solve either linear equations, or the discretized Navier-Stokes equations, 
on an unstructured (finite element) mesh. The scheme is relatively economical on computer 
storage and CPU time, both scaling almost linearly with problem size. 

It is important to note that on fully unstructured meshes it is not possible to use the most 
efficient iterative linear solvers, such as Stone's method2 or incomplete Cholesky conjugate 
gradients3, since these rely on there being some structure in the mesh. We are limited to diagonally 
preconditioned conjugate gradients for symmetric matrices, and little better than Gauss-Seidel 
for unsymmetric matrices. Thus a fast multigrid solver, for linear equations from unstructured 
meshes, is a valuable tool. 

First, it is necessary to briefly explain the ideas behind algebraic multigrid. Multigrid schemes 
rely upon using a hierarchy of grids (from fine to coarse) to solve a set of discrete equations, 
with each grid proving particularly effective for removing errors of wavelength characteristic of 
the mesh spacing on that grid. Often the hierarchy of grids is chosen a priori, making use of the 
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known structure of the original (finest) grid—this is geometric multigrid. However, discretization 
on an unstructured or finite element mesh demands a multigrid solver capable of automatically 
generating its own hierarchy of coarser grids. Algebraic multigrid solvers do just this, making 
use only of the equation matrix itself to create the corase grids. 

It is important to realise that the algebraic multigrid approach is not just a way of obtaining 
geometric multigrid performance on unstructured meshes. Because the grid coarsening is not 
blind, the algebraic multigrid solver should actually prove better than a geometric multigrid 
solver, even where the latter can be employed, on difficult highly anisotropic problems. 

A simple but effective algebraic multigrid algorithm is developed for solving a set of linear 
equations. The performance of this algorithm is evaluated next, where almost linear scaling with 
problem size is demonstrated, and the effectiveness of AMG on a nasty problem is proven. 
Results from a conjugate gradient solver are also presented for comparison. 

The ideas developed here are used later to produce an algebraic multigrid solver for the 
Navier-Stokes equations, discretized on an unstructured mesh. The performance of this 
Navier-Stokes solver is evaluated at the end of the paper. 

BASIC ALGEBRAIC MULTIGRID SCHEME 
The multigrid scheme 

Consider the linear equation set: 

where A is a sparse N x N matrix, with the diagonal entry at least the size of the sum of the 
absolute values of the off-diagonal entries, for every row. Given a latest guess for x, x1, it is 
possible to improve upon this by using point-by-point Gauss-Seidel sweeps. This method reduces 
short wavelength errors very effectively, but it is necessary to obtain a coarse grid representation 
of A in order to use Gauss-Seidel for removing long wavelength errors. 

Assume that there is a coarsening M x N matrix, K, which can be used to create a coarse 
M x M (M being less than N) representation of (1): 

where 

Obviously, there are N points on the original (fine) grid, and M points on the new (coarse) grid. 
The construction of K will be described later. Meanwhile, note that (2) will be used to provide 
a correction to xl so the right hand side is derived from the residual in (1): 

Having approximately solved (2), to obtain xcl, an improved solution for x on the fine grid is 
obtained: 

The multigrid strategy now becomes clear. Given (1), a fine-to-coarse grid mapping K is 
constructed, and used to produce a coarse grid equation for corrections. The right hand side of 
this coarse grid equation is derived from the residuals in the original fine grid equation 
corresponding to the latest guess for the solution. Having approximately solved the coarse grid 
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equation, the coarse grid solution is used to correct that on the fine grid. The fine grid solution 
is further improved by applying a smoothing scheme, such as Gauss-Seidel sweeps, to remove 
errors of a wavelength associated with the fine grid. 

The algorithm becomes recursive, in that the coarse grid equation is itself solved by creating 
a still coarser grid, and so on down until the grids can be coarsened no further. Thus a single 
cycle of the multigrid solver consists of moving through the grids from finest to coarsest, passing 
residuals down at each stage, and then sweeping to improve the solution on each grid, now 
moving from coarsest to finest, while passing corrections up at each stage. This is called a V-cycle. 

It has been found that the scheme described in this paper actually performs better when a 
slightly more complex cycling strategy is used, as illustrated in Figure 1. This consists of first 
passing the residuals down to all grids, and then solving on each coarse grid in turn, from 
coarsest to finest, by applying a V-cycle as described above, followed by a single Gauss-Seidel 
sweep. This may be called a F-cycle. 

Finally note that this method in no way relies upon the matrix A being symmetric. 

The coarsening algorithm 
The heart of the algebraic multigrid solver is the construction of the coarsening matrix K for 

each grid. The construction of the coarse grid will be described geometrically, after which the 
form of K should become clear. 

A typical two-dimensional fine grid is represented in Figure 2. There is a discrete equation 
associated with each node, where the value of the variable at the node is related to the values 
at all connected nodes. Coarse grid nodes are created by lumping together nodes from the fine 
grid, as illustrated in Figure 2. Note that this contrasts with the approach adopted in earlier 
algebraic multigrid work4,5 where the coarse grid is a subset of the fine grid. The equation for 
a node on the coarse grid is obtained by simply adding the fine grid equations from the 
contributing fine grid nodes. These equations are in terms of the fine grid nodes, but they are 
easily translated into coarse grid terms by replacing any reference to a fine grid node by a 
reference to the coarse grid node to which it belongs. 
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The matrix K performs the operation of adding fine grid equations to produce coarse grid 
equations, and KT translates fine grid references into appropriate coarse grid references. Thus 
given a fine grid matrix A, the matrix KAKT gives a coarse grid representation. Suppose the fine 
grid contains N nodes and the coarse grid M nodes, then K is a M x N matrix where the entry 
Kij contains a 1 if the jth fine grid node is contained in the ith coarse grid node, and a 0 otherwise. 

Note that it is important to have a sensible strategy for deciding which fine grid nodes should 
be joined to create coarse grid nodes. Generally, it is necessary to join together nodes which 
are strongly connected, in the following sense: nodes a and b are strongly connected if the 
coefficient of node b in the equation for node a is relatively large, and/or vice versa. 

The coarsening algorithm used in this work operates as follows. All fine grid nodes are ordered 
according to the strength of their strongest connections, that is according to the maximum value 
of |a1j/a1j| as j varies, where j ≠ i and the equation for node i is: 

the sum being over j . This list of nodes is processed once, starting with the most strongly 
connected node. Each node is joined to that neighbour to which it is most strongly connected 
to create a new coarse grid node, provided that neither of the two fine grid nodes has already 
been incorporated into a coarse grid node. Then the list of fine grid nodes is subjected to a 
second pass, again starting with the most strongly connected node. Any remaining fine grid 
node which does not already belong to a coarse grid node is now attached to the coarse grid 
node which owns the neighbour to which the fine grid node is most strongly connected. This 
second pass does not process the whole node list, but is stopped once the coarse grid reaches a 
particular size. Any remaining unallocated fine grid node is assigned to be a coarse grid node 
in its own right. Note that the reason for having two passes through the mesh, with the first 
pass unable to attach a fine grid node to an existing coarse grid node, is to avoid a whole string 
of fine grid nodes being collected into a single coarse grid node. 

This algorithm creates a coarse grid where each node is made up of an arbitrary number of 
fine grid nodes. It is used recursively to generate a hierarchy of grids. 

Each coarse grid has approximately half the number of nodes of the previous (fine) grid, and 
the coarsening stops once all nodes on the coarsest grid are isolated from each other (that is, 
all off-diagonal entries are zero in the equation matrix for the coarsest grid). The coarsening 
algorithm is simple and cheap, and takes due account of the strength of inter-node connections. 
Note that since it is quite acceptable to have the node list only approximately ordered according 
to connection strengths, a cheap approximate ordering algorithm is used, and the computer time 
required for the complete coarsening algorithm scales only linearly with the number of fine grid 
nodes. 
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PERFORMANCE OF THE BASIC SCHEME 
The primary aim of this section is to demonstrate that, for a simple problem at least, the algebraic 
multigrid scheme gives almost linear scaling with mesh size. A very simple test problem was 
constructed, consisting of solving the discretized heat conduction equation to determine the 
temperature distribution in a cube. The surface of the cube is given a zero heat flux boundary 
condition, except that the temperature is fixed at two opposite corners of the cube, to be 0 and 
1 respectively. Five different test computations are performed, on five different finite element 
meshes using only 8-node linear brick elements, but consisting of between 1000 and 64,000 nodes. 
Figure 3 shows, as a function of mesh size (number of nodes), the CPU time in seconds required 
by the multigrid scheme to solve the conduction equation, starting with an initial guess of zero 
temperature everywhere and reducing the residuals to near round-off error on a Cray-2 computer. 
This CPU time includes the initialization time, required to create the hierarchy of coarse grids. 

It appears that the CPU time scales approximately as the number of nodes to the power 1.1, 
but the points do not lie precisely on a straight line in the log-log plot. 

In another set of tests, the linear AMG solver has been compared to a diagonally preconditioned 
conjugate gradient (CG) solver, on 3 different computers, and on 2 different problems. The 
application consists of solving a discretized Poisson equation for potential flow along a square 
duct which undergoes a right-angled bend. This represents the pressure-correction stage of one 
iteration within an iterative Navier-Stokes solver, and since tight convergence is rarely required 
for this pressure-correction step, we only demand a 10 - 3 reduction in the sum of absolute 
residuals for convergence. The computational cells in the first problem had an aspect ratio of 
approximately 2, while in the second problem the legs of the duct were made much longer 
(without increasing the number of mesh cells) so increasing the aspect ratio to approximately 
40. Each problem was solved with various numbers of mesh cells, always keeping the aspect 
ratios constant, using both AMG and CG solvers on a Cray-2. Tables 1 and 2 give the recorded 
CPU times (in secs) for problems 1 and 2 respectively, along with an estimate of scaling with 
mesh size which was derived from these figures. 
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Table 1 CPU time vs. mesh size 
for first problem 

Mesh AMG CG 
size (N) time time 

288 022 0.04 
2304 1.96 0.42 

18,432 22.49 6.27 
36,000 52.86 12.85 

Scaling N1.16 N1.19 

Table 2 CPU time vs. mesh size 
for second problem (high aspect 

ratio) 

Mesh AMG CG 
size (N) time time 

288 020 0 09 
2304 1.31 1.89 

18,432 1497 53.45 
36,000 36.43 137.47 

Scaling N1 12 N1..52 

Table 3 CPU time on various 
machines for first problem 

Table 3 CPU time on various 
machines for first problem 

AMG CG 
Computer time time 

Cray-2 1.96 0.42 
IBM 

RS-6000/320 1.46 2.77 
SUN 

Sparc-IPC 6 84 11.34 

Most striking is the severe degradation of the conjugate gradient scheme on the high aspect 
ratio problem—diagonal preconditioning alone is clearly inadequate. In contrast, the multigrid 
solver actually performs better on the (harder) high aspect ratio problem than multigrid on the 
first problem. 

When the mesh cells have a high aspect ratio, the AMG coarsening scheme automatically 
joins together nodes across the grain of the mesh, so creating coarse grids with lower aspect 
ratios which can more effectively propagate information down the length of the mesh. Perhaps 
the high degree of anisotropy in the second problem actually helps the coarsening algorithm to 
create more effective coarse grids than are produced for the first problem—hence the improvement 
in performance. 

The conjugate gradient scheme vectorizes very well, while the AMG solver is not amenable 
to vectorization, and this means that the CG scheme performs relatively much better on a Cray-2 
as compared with a desktop workstation. This is illustrated in Table 3, which gives timings for 
problem 1 with a mesh of 2304 cells on 3 different machines. 

Even on the easy problem AMG outperforms CG on both workstations, and the multigrid 
solver actually runs faster on the RS-6000 than it does on the Cray-2! 

This linear AMG solver has been applied to many other problems, and has generally proved 
very robust. 

MULTIGRID FOR THE NAVIER-STOKES EQUATIONS 
The discrete equations 

The method proposed in this section could be applied to any Navier-Stokes discretization 
based on primitive variables, which is amenable to solution by an iterative method such as 
SIMPLE6. However, the method will actually be described in the context of the partly staggered 
mesh approach used in the ASTEC code7, where pressures are stored at the centres of 8-node 
linear elements, and all other variables, including velocity components, are stored at the corner 
nodes8. 

The Navier-Stokes equations for velocity u = (ul,.u2, u3) and pressure p are: 
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where p is the fluid density, μ the dynamic viscosity and F an arbitrary body force. Equation 
(7) applies for each velocity component i = 1,2, 3, and the summation convention is employed 
for index j . 

The discrete equations are derived by applying a finite volume approach to a finite element 
mesh of 8-node cuboidal elements. The left hand picture in Figure 4 illustrates how the control 
volumes are constructed around each node for quadrilateral elements in 2 dimensions. The solid 
lines surround elements, and there is a node at each corner of each element (wherever solid lines 
meet). The control volume around each node is contained within the broken lines, which simply 
join mid-points of opposite sides within each element. The generalization to cuboidal elements 
in 3 dimensions is straightforward. 

A proportion of upwind differencing is used for representing advection, that proportion 
depending upon the local mesh Peclet number. The discretization scheme is fully implicit. 

Now the linearized discrete Navier-Stokes equations can be written as: 

with u now a vector of length 3 x number of nodes representing the discrete velocity field in 3 
dimensions, and p a vector of length number of elements representing the discrete pressure field. 

Equation (9) is the discretized momentum equation for velocity u, with the operator G mapping 
the element pressure field p into a pressure gradient vector for each node. The matrix A arises 
from the transient, advection and diffusion terms of (7), with Cu (10) representing (∂/∂xj)puj 
in (8). General source terms (including F or ∂p/∂t) are represented by a and b. 

Equation (10), the discretized continuity equation, is written in an unfamiliar form in order 
to illustrate the pressure-correction solution method. The terms involving pressure have no 
physical basis—they are included only for numerical reasons. D is the operator used to determine 
pressure corrections in the solution procedure, as will become clear later, and N is the inverse 
of the diagonal of A. It would be nice to have D = CNG but in order to avoid spurious 
checker-board oscillations in the pressure solution, arising because of this mesh arrangement8, 
it is necessary to choose a different form7 for D. CNG represents a Laplacian-like operator, and 
D is simply an alternative representation of this operator which does not allow checker-board 
solutions. 

To illustrate the difference between CNG and D, consider a two-dimensional rectilinear mesh 
of quadrilateral cells. The discrete representation of CNG, for the cell at location (I, J), will 
involve the neighbouring cells at locations (I + 1, J + 1), (I + 1, J — 1), (I — 1, J + 1) and 
(I —1,J—1). However, the discrete representation of D at location (I,J) would involve 
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neighbouring cells (I + 1, J), (I — 1, J), (I, J + 1) and (I, J — 1). It is well known that the former 
discretization8 allows checker-board solutions, while the latter does not. 

Because of these extra terms, the nodal velocities do not exactly satisfy continuity Cu = b, 
although the error Ω(CNG — D)p is second order in the mesh size, and generally proves 
acceptably small. 

The pressure-correction scheme 
Before discussing the multigrid approach, it is worth describing how a pressure-correction 

scheme such as SIMPLE would be used to solve (9) and (10). There follows a summary of one 
SIMPLE iteration. 

Let u0, p0 be initial guesses for u and p. Then (9) is used to obtain an improved velocity 
solution u1, by solving the linear equation: 

Since A is a diagonally dominant matrix, an iterative point by point method such as 
Gauss-Seidel can be used. These corrections to u, obtained by solving (9), are usually 
under-relaxed with an under-relaxation factor ωu, thus the latest velocity field is actually taken 
to be: 

Having used the momentum equation to improve the velocity solution, the continuity equation 
is used to improve the pressure solution. The new pressure field p1 is obtained by solving: 

Ω = ωu/ωp where ωp is effectively an under-relaxation factor for pressure corrections. Provided 
D is a diagonally dominant matrix, an iterative linear solver can be used to obtain p1 from (13). 

To ensure that the pressure corrections arising from (13) do not later produce a large increase 
in the residuals for (9), the velocity field is also corrected according to 

where dp = p1 — p0. The relationship between δu and δp given by (14) is chosen so as to leave 
the right hand side of (13) unchanged when u2 and p0 are replaced by u3 and p1 respectively. 

u3 and p1 represent the latest guesses for velocity and pressure after one iteration of the 
SIMPLE method, and these would be provided as u0 and p0 for the next iteration. A converged 
solution can be obtained after many iterations providing suitable values are chosen for the 
relaxation factors ωu and ωp. The method is relatively robust, with the majority of problems 
converging for values of ωu = 0.6 and ωp = 0.4. 

Note that after each iteration, non-linearities are accounted for by modifying A, and perhaps 
a and b. The method can be improved by using more sophisticated linear solvers to calculate 
the momentum and continuity corrections to velocity and pressure. 

However, the SIMPLE method scales poorly with mesh size as regards CPU time. 

Application of multigrid 
It is not sufficient to apply the multigrid method separately to the momentum correction and 

continuity correction steps of each SIMPLE iteration. Although this gives multigrid performance 
to the linear equation solvers within each iteration, the number of iterations required to obtain 
convergence still increases with mesh size. To obtain multigrid performance, the coupled equations 
(9) and (10) must be subjected to multigrid together. 
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In order to avoid having to discretize on the coarse grids, the multigrid method is used to 
solve only the linearized Navier-Stokes equations. So this is not a full approximation scheme, 
although the velocity-pressure coupling is treated implicitly on the coarse grids. For Stokes 
flow, where the advection terms are neglected, just one application of the multigrid solver would 
give the final solution. However, because the non-linear advection terms are linearized, several 
'outer iterations' are usually required to obtain convergence. Each outer iteration consists of 
solving the linearised Navier-Stokes equations using the multigrid scheme. 

A hierarchy of grids is produced, on each of which there is a representation of (9) and (10), 
and on each of which the SIMPLE method is used to help solve these equations (just as 
Gauss-Seidel is used for the single variable situation). In other words, SIMPLE is used as the 
smoother. 

Given (9) and (10) on the fine grid, it is necessary to construct a coarse grid, of nodes and 
elements, and so coarse grid equivalents for (9) and (10). 

Equation (9) is based at nodes, with the diagonally dominant sparse matrix A used to determine 
velocity corrections. Thus the coarse grid nodes, and the coarsening matrix K, can be determined 
by applying the earlier methods to A. Similarly, since (10) applies to elements, the matrix D is 
used to determine coarse grid elements and the element coarsening matrix M. 

Once K and M have been determined, then coarse grid representations of (9) and (10) can 
be constructed 

For reasons to be described later, (16) is approximated to: 

where Nc is the inverse of the diagonal of KAKT. 
The right hand sides of these equations are determined by residuals from the latest guess on 

the fine grid: 

where u and p represent the latest guesses on the fine grid. Once (15) and (17) are approximately 
solved, then corrections to the fine grid solution are given by: 

The coarse grid equations have exactly the same form as the fine grid equations. This can be 
seen more clearly by defining: 

whereupon (15) and (17) look very similar to (9) and (10). Clearly, the SIMPLE scheme can 
be used to reduce errors in the coarse grid equations just as it is used for the fine grid equations. 

If the strict coarse grid element equation were used, that is (16), then the definition of Dc 

would actually be: 

This formulation has two drawbacks. First, much more computational work is required to 
calculate Dc* compared with Dc, and secondly it is necessary to have a more complex method 
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of determining M in order to avoid Dc* completely losing diagonal dominance and so making 
error smoothing with SIMPLE impossible. 

The coarse grid can be visualized geometrically, with each coarse grid element formed by 
combining fine grid elements, and each coarse grid node formed by combining fine grid nodes. 
Each coarse grid element contains an arbitrary number of coarse grid nodes, and a coarse grid 
node can belong to an arbitrary number of coarse grid elements. The particulars of the 
discretization in ASTEC mean that on the finest grid every element contains exactly eight nodes, 
but this is not true for the coarse grids. Figure 4 illustrates the mesh coarsening for a 2D mesh 
of 4-node quadrilateral linear elements. Note that the elements and nodes are essentially coarsened 
independently. 

Just as before, a hierarchy of coarse grids is created from the original fine grid equations, 
and the coarsening stops once there are no off-diagonal terms in either the node or element 
equations. The same F-cycle multigrid strategy is used to solve the linearized discrete 
Navier-Stokes equations, with outer iterations used to take care of non-linear terms. 

PERFORMANCE OF NAVIER-STOKES MULTIGRID 
Calculation procedure 

For each multigrid calculation the following solution strategy is employed. 
The initial guess consists of zero pressure and zero velocity everywhere, except that the velocity 

is set at inlet nodes. A divergence-free velocity field (Ñ·u = 0 everywhere) is established by 
applying 12 cycles of the simple multigrid solver to solve (10) for the fine grid pressure corrections, 
and thus correcting velocities according to (14). These pressure corrections are not actually 
applied to the pressure field—only the flow is modified. Then several outer Navier-Stokes 
multigrid iterations are performed, with the advective terms updated after each one, until 
appropriate convergence criteria are satisfied. Approximately 12 outer iterations are generally 
required, with each outer iteration containing 8 multigrid cycles. The smoothing operation on 
each grid is just 1 SIMPLE iteration, consisting of 1 Gauss-Seidel sweep on the momentum 
equation, and 3 Gauss-Seidel sweeps on the pressure-correction equation. The under-relaxation 
factors used for SIMPLE as a smoother in the multigrid solver are ωu = ωp = 0.8, but the 
performance of the scheme proved relatively insensitive to the values prescribed for ωu and ωp. 

The test problem 
The multigrid solver is applied to determine laminar incompressible flow in the geometry 

shown in Figure 5. A uniform inlet flow is prescribed at the start of the small curved duct, 
with an outlet boundary condition (constant pressure and zero normal derivatives for velocity) 
applied on the downstream face of the larger tank. All other boundaries are walls, with a no 
slip condition on velocity. The Reynolds number for the inlet duct flow is 100. Several calculations 
are performed to determine how the CPU time scales with mesh size. 

For comparison the standard SIMPLE method7, using a diagonally preconditioned conjugate 
gradient solver for continuity, is also applied to this problem. 

A lax convergence criterion is applied for these calculations, specifically that the maximum 
momentum and continuity residuals are reduced by three orders of magnitude. Figure 6 shows 
maximum momentum residual against Cray-2 CPU time for both methods on the 11,000 element 
problem, and illustrates that applying more rigorous convergence criteria would inflate the 
SIMPLE timings much more than the AMG timings. 
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A log-log plot of CPU time on a Cray-2 machine, against mesh size, is given in Figure 7. 
The CPU time for the SIMPLE algorithm scales approximately as n1.55, where n is the number 
of nodes in the mesh. By contrast the multigrid solver scales almost linearly, as n1.15, using 
about 1 minute of Cray-2 CPU time for every 1000 nodes. 

The memory requirements of the multigrid scheme also vary linearly, with approximately 250 
words of extra storage required for every node when the multigrid solver is used. Note that all 
the matrices are sparse, and only the non-zero entries are stored and processed. 
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The Navier-Stokes AMG scheme is not robust however; it has been found to fail completely 
on some problems. The approximation involved by using Dc instead of Dc* ((21) and (22)) is 
probably responsible for reducing the robustness of the Navier-Stokes multigrid solver. Sweeps 
on the coarse grids actually introduce errors to the fine grid solution, because Dc ≠ Dc*, and 
on many problems the fine grids cannot remove these errors as fast as they are generated on 
the coarse grids. The algorithm is numerically unstable and quickly diverges. 

CONCLUSIONS 
A simple algebraic multigrid scheme has been presented which can be used to solve linear 
equations arising from discretization on a 3D unstructured (finite element) mesh. This scheme 
has been extended to allow solution of the linearized discrete Navier-Stokes equations for 
incompressible flow, again on an unstructured mesh in three dimensions, taking account of the 
velocity-pressure coupling. 

The multigrid scheme shows almost linear scaling of both CPU time and memory requirements 
with mesh size, both for single variable and velocity-pressure solutions. 

The linear AMG solver proves particularly effective for problems where the mesh has a high 
aspect ratio, and is also generally faster than diagonally preconditioned conjugate gradients on 
non-vector machines. 

On the given test problem, the multigrid Navier-Stokes solver proves faster than the standard 
SIMPLE algorithm for all but the smallest meshes. 

The single variable AMG solver has proved very robust, and is a valuable tool for solving 
linear discrete equations on unstructured meshes. 

However, the Navier-Stokes AMG solver has been found to fail on some problems—the 
method requires improvement before it can be considered for general use. 
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